Unleashing the power of LED-to-camera communications for IoT devices

Alexis DUQUE^{1,2}, Razvan STANICA², Hervé RIVANO², Adrien DESPORTES¹

¹ Rtone - ² Univ Lyon, INSA Lyon, Inria, CITI

Outline

- 1. Motivations
- 2. Related Works
- 3. Platform description
- 4. Evaluation
- 5. Conclusion

Motivations

- Add connectivity to consumers electronics products at low cost
- When radio (BLE, NFC, WiFi) does not fit well
- Avoid hardware modifications
- User friendly and easy to use

SMARTPHONE CAMERA and SMALL LOW COST LEDs

Related Works

- LED to Camera communication has already been studied
- Rolling Shutter Effect based
 - o [1] Kuo, Y.-S., Pannuto, P. (2014). Luxapose. MobiCom '14
 - [2] Lee, H., Lin, H. (2015). RollingLight : Enabling Line-of-Sight Light-to-Camera Communications. Mobisys '15
 - [3] Ferrandiz-Lahuerta, J., Camps-Mur, D. (2015). A reliable asynchronous protocol for VLC communications based on the rolling shutter effect. GLOBECOM '15
 - [4] Rajagopal, N., Lazik, P. (2014). Visual light landmarks for mobile devices. Journal of Lightwave Technology.
 - [5] Hao, J., Yang, Y. **CeilingCast**: Energy Efficient and Location-Bound Broadcast Through LED-Camera Communication. INFOCOM '16
- UFSOOK [6] Roberts, R. D. (2013). Undersampled frequency shift ON-OFF keying (UFSOOK) for camera communications (CamCom). WOCC '13

BUT THEY ALL TARGET LIGHTING PURPOSE LEDS

Related Works

	Description	Computation Time	Modulation	Througput	Range
[2] RollingLight	LOS Ceiling⁄Spot LED	ROI Detection: ? performed only once Demodulation : 18.1ms	FSK	12 Bps	600 pixels
[3] Ferrandiz-Lahuerta	NON LOS Ceiling LED	ROI Detection: NA Demodulation : 18.1ms	OOK	700 bps	3m
[4] Visual Light Landmarks	NON LOS Ceiling LED	ROI Detection: NA Demod.: 18.1ms	FSK	1.25 Bps	3m
[5] Ceiling Cast	LOS LED strips	ROI Detection: ? performed only once Demod.: 9 ms	ООК	480 bps / LED	5m
[1] Luxapose	LOS Ceiling LED	Full algorithm : 300 ms on a cloudlet	OOK FSK	NA : indoor loc.	2.5m

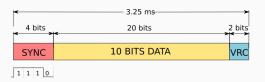
Motivations

- Can we apply previous works to small colour LED?
- Adapt them to our context
- How much throughput ?
- Is our solution robust against ...
 - Indoor illumination ?
 - **Sun ?**
 - Motion ?
 - Distance?

Platform description

Emitter : STM32 Cortex M0+

Receiver : LG Nexus 5



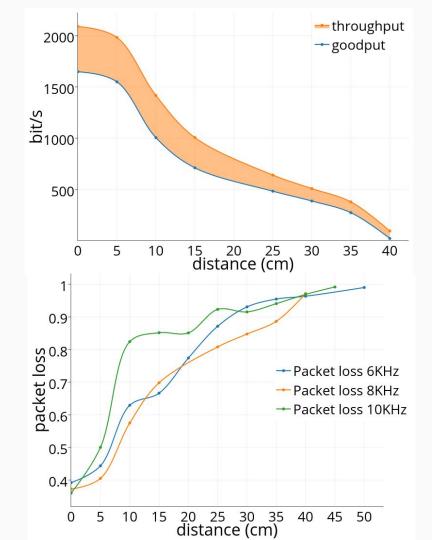
Platform description

Emitter : STM32 Cortex M0+

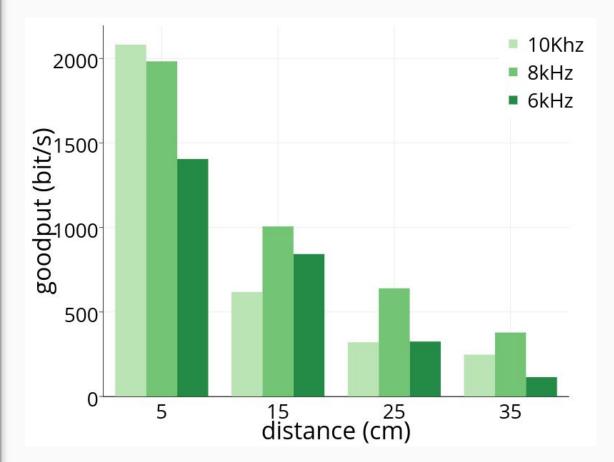
- 6 kHz On-Off-Keying modulation
- Manchester RLL code
- 10 bits payload + 2 parity bits

Receiver : LG Nexus 5

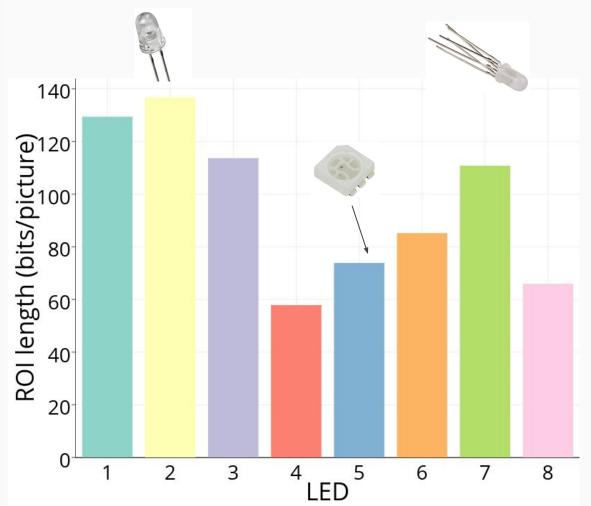
- Android Marshmallow 6.0 (API 23)
- 30 fps
- Sensor sensitivity : ISO 6400
- Exposure Time : 1/100000 s


Evaluation

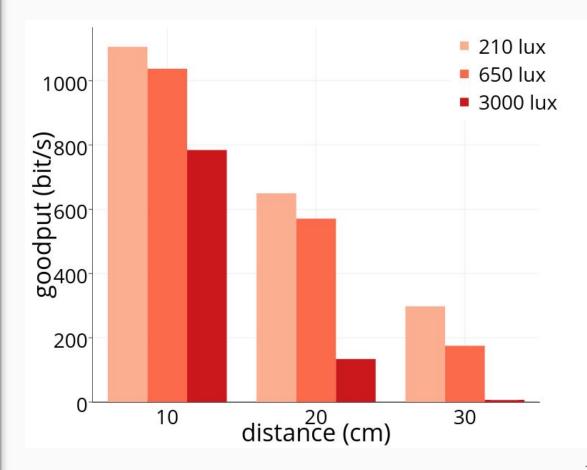
- Distance
- Illumination
- User impact
- Angle
- Algorithm performance


Evaluation *Distance*

- → 6 kHz Clock Rate
- → 1600 bits/sec at 5cm
- → / 2 at 15 cm
- → Distance reduce the ROI on each frame


Evaluation Frequency

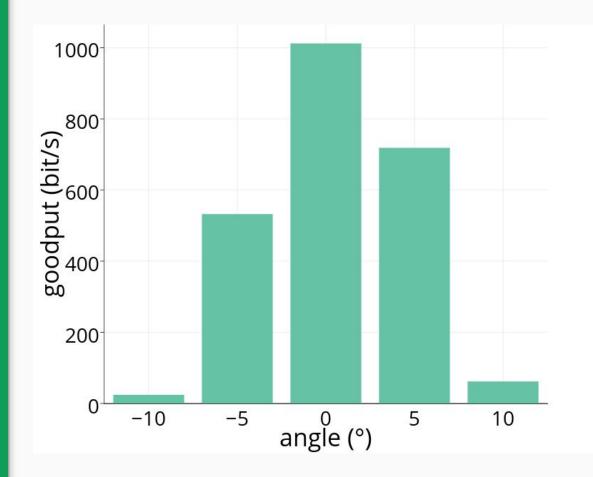
- → f > 8 kHz introduce decoding error
- → Due to the camera row scan freq.
- → High frequency -> smaller packets -> increase range


Evaluation *LEDs*

- → Green LED is better (2, 7, 5)
- → Lens
- → Different half power angle
- \rightarrow SMB LEDs (4, 5)

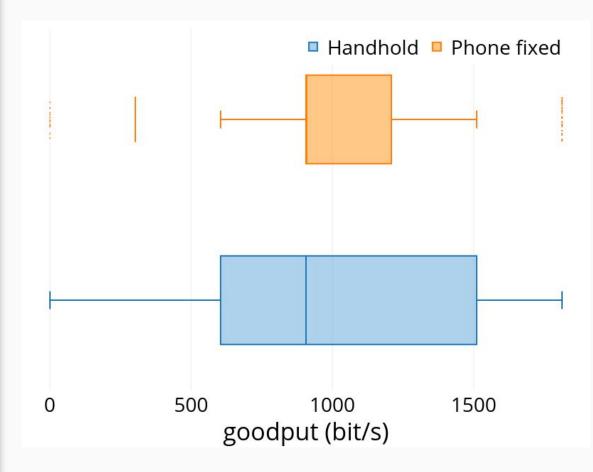
Evaluation

- → Robust in most indoor condition
- → 650 lux ≈ standard indoor illumination for desk work
- → Broken by sun due to CMOS sensor saturation

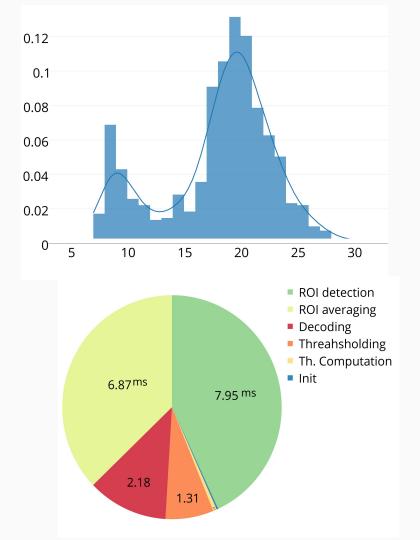


Evaluation Angle

→ At 10 cm


→ Half-power angle LED (15 - 30°)

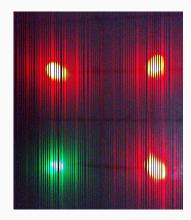
- → Could be fixed using another kind of LED
- → But max throughput will decrease

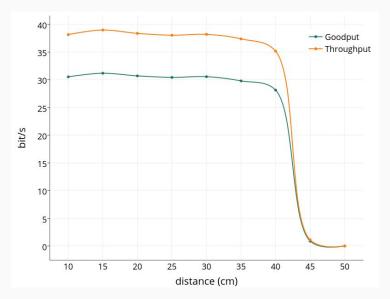

Evaluation User impact

- → Holding a smartphone, user introduce small angle changes
- → High throughput change !

Evaluation Algorithm performances

- → Real time
- → 18.4 ms on average
- → LED position is computed on each frame (every 33 ms)

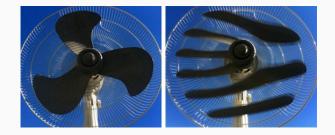


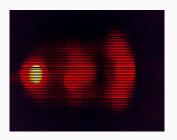

Conclusion

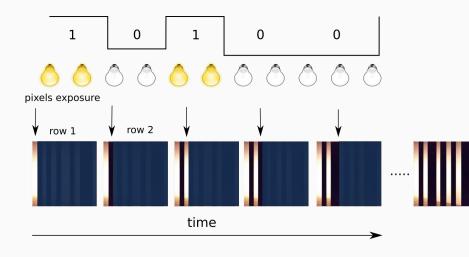
- Using small color LEDs is feasible
- Performance and impact of environment factors has been evaluated
- 1,6 kbit/sec in short range conditions (5cm)
- **Real time** computation
- Robust against motion

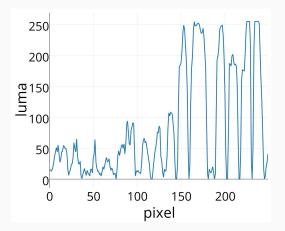
Further work

- Study smartphone to LED using flashlight
- Multiple LEDs communications




Thank you for listening ! **Questions time**





Rolling Shutter Effect

