
MitM Attack Detection in BLE Networks using
Reconstruction and Classification Machine

Learning Techniques ?

Abdelkader Lahmadi1, Alexis Duque2, Nathan Heraief3, and Julien Francq3

1 Université de Lorraine, CNRS, Inria, Loria, F-54000 Nancy, France
lahmadi@loria.fr

2 Rtone - 120 rue de Saint-Cyr - 69009 Lyon - France
alexis.duque@rtone.fr

3 Airbus CyberSecurity SAS, 78996 Elancourt Cedex, France

Abstract. Internet of Things (IoT) devices, including smartphones and
tablets, are widely deployed in various application domains ranging from
smart homes to industrial environments. Many of these devices rely on
Bluetooth Low Energy (BLE) as a communication protocol for their con-
trol or the transfer of data. Trivial attacks can easily target these devices
to compromise them due to their low security features and inherent vul-
nerabilities in their software and communication components. In this pa-
per, we firstly demonstrate a Man-in-the-Middle (MitM) attack against
BLE devices while collecting datasets of network traffic data exchange
with and without the attack. Secondly, we study the use of machine
learning to detect this attack by combining unsupervised and supervised
techniques. We applied and compared two unsupervised techniques to re-
construct the model of BLE communications and detect suspicious data
batches. We then applied a classification method based on Text-CNN
technique to classify packets as normal or attack inside each suspicious
batch. Our model reconstruction results show that we are able to dis-
criminate normal and attack models with high precision and our classi-
fication method achieves high accuracy (≈ 0.99) and low false positive
rate (≈ 0.03).

Keywords: IoT security · Bluetooth Low Energy · Neural networks ·
Machine learning · Attack detection

1 Introduction

BLE (Bluetooth Low Energy) is a widely used radio technology by connected
devices including smartwatches, smartphones, smart plugs and smart locks, that
are referred as Internet-of-Things (IoT). The number of these devices and their
deployment in particular for smart homes and industrial environment is grow-
ing, and they are also becoming a subject of potential security issues. They

? This work is funded by the French Government under grant FUI 23 PACLIDO
(Protocoles et Algorithmes Cryptographiques Légers pour l’Internet Des Objets).

2 A. Lahmadi et al.

are vulnerable even to trivial attacks and can be easily compromised due their
limited security features and lacking of secure development practices. Multiple
existing research works have shown real world discovered vulnerabilities [11] in
BLE devices and demonstrated attacks against them [20]. An easy to deploy
and perform attack on BLE devices is the Man-in-the-Middle (MitM) attack by
using several available tools (BTLeJuice, GATTack, Mirage) and with low cost
hardware (few BLE adapters) [7]. This attack could be performed even if the de-
vice is not too close to the attacker by abusing BLE-enabled smartphones or by
remotely controlling a mobile malware. In addition, with special radio adapters
and amplifiers, an attacker can intercept BLE signals up to 1,000 meters while
initially the BLE radio range is up to 100 meters [20].

Plenty of work has been done to improve the security of IoT devices by pro-
viding detection and protection methods [18]. In particular, several work rely on
machine learning techniques to identify anomalies in network traffic through of-
fline or online analysis [8]. Nguyen et al. [13] proposed a machine learning based
system for detecting compromised IoT devices. Their system uses devices spe-
cific communication patterns to detect anomalous behaviours deviation caused
by attacks. They applied a federated learning approach using Deep Neural Net-
works (DNN) to train models locally and then update a centralised model. How-
ever, most of existing work focused on volumetric attacks, such as Mirai [2] and
few and rare work interested in attacks with sporadic network activity such as
MitM, in particular for BLE based systems [1]. Oliff et al. [14] proposed a de-
tection method based on machine learning for spoofing attacks in BLE enabled
occupancy system. Their method uses three classifiers with location labeled BLE
advertising packets and under identity spoofing attacks. The proposed method is
able to detect attack with an accuracy ranging from 80% to 91%. Zuo et al. [20]
have shown that a large number of deployed BLE devices and their companion
mobile app are easy to fingerprint and rely on ”Just Works” pairing mode which
allows attackers to hijack their connections using MitM attack. Yaseen et al. [19]
addressed the issue of detecting MitM in BLE based eHealth care systems by
using anomaly detection metrics.

In this paper, we propose a machine learning based method for detecting
MitM attacks by using datasets of a concrete attack scenario on BLE devices.
Our method relies on reconstruction and classification techniques to detect sus-
picious network data batches that have large deviations from benign patterns
of behaviour and then detect inside each of them attack packets. For the recon-
struction technique, we compared the performance of Long Short-Term Memory
(LSTM) and Temporal Convolutional Network (TCN) based auto-encoders to
learn normal models of BLE packets. Our results show that a TCN approach is
more accurate and provides higher temporal memory effect since our datasets
are of small size. The classification technique combines payload bytes embed-
ding and statistical features to learn, by using a Convolutional Neural Network
(CNN) architecture, latent features of packets and in a second stage we use a
Random Forest algorithm to classify packets. By combining the two techniques,

MitM Attack Detection in BLE Networks using ML 3

we were able to detect and classify the BLE packets with high accuracy (≈ 0.99)
and low false positive rate (≈ 0.03).

The rest of the paper is organised as follows. In section 2, we provide an
overview of the BLE protocol and its main features, packets and operations. In
section 3, we detail our experimental set-up of the MitM attack and the process
of collecting the datasets. In section 4, we describe our ML-based detection
method by jointly applying reconstruction and classification techniques. Section
5 concludes the paper and provides perspectives of this work.

2 BLE overview

Bluetooth Low Energy (BLE) was introduced by the Bluetooth Special Interest
Group (SIG) in [15] as a variant targeted towards battery-powered Internet of
Things (IoT) applications such as fitness trackers, headphones and smartwatches.
BLE is becoming one of the most common wireless standards used today in IoT
devices. According to the Bluetooth SIG, more than two billion devices sup-
porting BLE have been shipped in 2018 [16]. Likewise, it is also becoming more
commonly used in applications where sensitive information is being transferred.

2.1 BLE advertising and connection

BLE uses the same 2.4 GHz ISM band as Bluetooth Classic and Wi-Fi. The
BLE specification divides the band into 40 channels of 1 MHz spaced 2 MHz
apart. Three of these channels are called advertising and are used by devices
exclusively to send beaconing packets called advertising packets.

BLE specification defines two roles: Peripheral and Central. Central devices
are the ones that initiate connection, while Peripherals accept. In this way a
Central devices acts as a master, on which many Peripheral slaves can be at-
tached. Figure 1 provides an overview of BLE workflow between a peripheral
and a central (smartphone). The Central device will listen for advertisements
from Peripheral devices but once the advertisement from the desired Peripheral
device is received, the Central may connect by entering the initiating state. For
the Peripheral device, the advertising state is also the initial state before the
connection state. The connection state is the final state in which the Peripheral
and Central devices can exchange data.

The BLE Link Layer offers two mechanisms for exchanging data in BLE: ad-
vertising and connections. Advertising allows sending unidirectional but broad-
cast data. The Peripheral device sends data using Advertising and Scan Response
packets. Because it is broadcast in nature, multiple devices can listen to the ad-
vertising data. Each advertising packet is configurable by the product developer
and can contain a wealth of information. It is not necessary to connect to a device
to get these packets, but the Central cannot send any data back. Connections
allow the Central and Peripheral to exchange data bidirectionally, controlling
the device and sending it information, as opposed to the unidirectional nature of
advertising. So advertising packets serve dual roles: they enable Central devices
to find devices and connect, and also able to convey information.

4 A. Lahmadi et al.

Fig. 1: BLE workflow between peripheral and central devices.

2.2 Data exchange

Data is transmitted on 37 data channels which are not used for advertising.
When devices are in a connection, they periodically exchange packets during
connection events. The rate of these events is defined by parameters such as
Connection Interval. The BLE specification allows the peripheral device to skip
connection events if there are no data to exchange.

The logical link control and adaptation protocol (L2CAP) within the BLE
stack fragments and re-assembles packets from other layers. It takes packets
received by the Link Layer and forwards them the Generic Attribute (GATT)
protocol for accessing data or the Security Manager. Data exposed by a Pe-
ripheral are presented in a GATT profile which is a hierarchical structure of
attributes allowing the transfer of information between a Central device and a
Peripheral device. Within a GATT profile, attributes can be either services or
characteristics and are identified by a universally unique identifier (UUID). In
addition to their UUID, characteristics are made up of an attribute handle, a
set of properties and a value. The handle specifies the position of the charac-
teristic in the profile and the value holds the actual data of the characteristic.
Properties specify which operations (read, write, etc.) can be executed on each
particular attribute and with which specific security requirements (encryption,
authentication).

2.3 BLE security

A BLE connection is said to operate at a specific security mode for which there
are several security levels. The required security mode and level of a connection
may change from time to time, leading to procedures to increase that level.
When two devices which initially do not have security, wish to do something
which requires security, the devices must pair first. This process is triggered (for

MitM Attack Detection in BLE Networks using ML 5

example) by a Central device (e.g. a smartphone) that is attempting to access a
data value of a characteristic on a Peripheral device that requires authenticated
access. Pairing involves authenticating the identity of two devices, encrypting
the link using a Short-Term Key (STK), and then distributing Long-Term Keys
(LTK) used for encryption. The LTK is saved for faster reconnection in the
future, that is termed Bonding.

The security level of the connection is based on the method of pairing per-
formed and this is selected based on the I/O capabilities of each device. The
security level of any subsequent reconnection is based on the level achieved dur-
ing the initial pairing. When pairing, the method chosen determines if the pairing
performs a strong authentication or not. Unauthenticated pairing occurs in sit-
uations where the device could not authenticate itself, for example if it has no
Input/Output (I/O) capabilities. Pairing involves authenticating the identity of
the two devices to be paired, usually through a secret-sharing process. Once
authenticated, the link is encrypted and keys distributed to allow security to
be restarted on a reconnection much more quickly. If these keys are saved for
a future time, the devices are said to be Bonded. A pairing procedure involves
an exchange of Security Manager protocol packets to generate a temporary en-
cryption key called the Short Term Key (STK). During the packet exchange, the
two peers negotiate one of the following STK generation methods: ’Just Works’
where the STK is generated on both sides, based on the packets exchanged in
plain-text, ’Passkey Display’ where one of the peers displays a randomly gen-
erated 6-digit passkey and the other side is asked to enter it, ”Out of Band
(OOB)’ where additional data is transferred by means other than the BLE ra-
dio, such as another wireless technology like Near Field Communication (NFC),
’Numeric Comparison’ (Low Energy Secure Connections Pairing) which is only
available with BLE 4.2 and it uses an algorithm called Elliptic Curve Diffie-
Hellman (ECDH) for key generation, and a new pairing procedure for the key
exchange. However, many BLE devices rely on the Just Works pairing method
which is insecure and the devices become vulnerable to MitM attacks.

3 Experimental set-up

In this work, we consider the scenario of a BLE-enabled torque wrench device
controlled remotely by a user through an App running on a smartphone to adjust
and calibrate with high precision the torque settings (angle and force) as depicted
in Figure 1 of Section 2. In this case study, the attacker could be located nearby
the device or it could act remotely by compromising the smartphone with a
malware. In the second situation, attacks made by a malware could be broad,
and they require the exploitation of specific vulnerabilities to the smartphone, its
OS or the running App that controls the torque wrench. In this work, we focus
more on nearby attackers that perform Man-in-the-Middle (MitM) attacks to
connect, pair, read, and even write to the device. This attack does not require
specific vulnerabilities. The only constraint is that the attacker has to be within

6 A. Lahmadi et al.

the communication range of BLE which is at most 100 meters which could be
extended to 1,000 meters by using long range BLE sniffers [20].

We performed the MitM attack with a cloned BLE device identical to the
torque wrench. The clone is realised by using 2 USB dongles Bluetooth 4.0
Cambridge Silicon Radio (CSR) and the Mirage tool [5]. The attacker uses this
clone to read, modify and write the settings of the torque wrench which may alter
its accuracy and the quality of operations. In particular, when the operator is
adjusting the settings of the torque wrench with the desired values, the attacker
will modify them and the applied torque will be different from the expected. In
our experimental environment, we used the following devices and tools:

– Two devKits nRF52840. One is used by the torque wrench device, and the
second is used as a sniffing interface for BLE packets.

– A smartphone with the nRFConnect installed and running to control re-
motely the torque wrench device.

– Two USB dongles to perform the MitM attack.
– Two hosts: one is used to perform the MitM attack by using the Mirage tool,

and the second is running Wireshark tool for packets capture using the BLE
sniffer.

3.1 Experimental Methodology

In our case study, we define two main scenarios. The first is a nominal scenario
without any attack, and in a second scenario we introduced the MitM attack. For
each scenario, using the experimental environment described above, we collect
the BLE packets exchanged between the device and the smartphone while vary-
ing the distance between them. The distance as explained in Section 4 will be
used as a feature for detecting the attack and allows us to measure the detection
accuracy according to the closeness of the attacker to the device.

(a) Normal scenario (b) MitM scenario

Fig. 2: Experimental Set-up for normal and MitM scenarios.

Normal scenario. In this scenario, as depicted in Figure 2a, we collect the
BLE packets exchanged between the BLE device and the App while performing
these operations over time: from 0 to 1 minute the App reads 4 values, from 1

MitM Attack Detection in BLE Networks using ML 7

to 5 minutes the App activates and receives notifications, at 5 minutes the App
deactivates the notifications, from 5 to 6 minutes the App writes 4 values, from
6 to 10 minutes the App activates and receives the notifications, at 10 minutes
the App deactivates the notifications and reads the Device Name characteristic.
These operations allows us to simulate a behaviour of the App running on the
smartphone and generate different BLE packets including reading, writing and
notifications.

MitM scenario. In this attack scenario, as depicted in Figure 2b, the at-
tacker will modify values written by the smartphone App on the BLE device.
From 5 to 6 minutes, the values written by the App are inverted by the attacker
before being sent to the BLE device. From 6 to 10 minutes, the notifications sent
by the BLE device to smartphone are modified. The timing of the modifications
and the different operations are used for labelling the captured packets with
”normal” and ”attack” labels.

3.2 Datasets building

Using the two experiments described above, we collect different datasets of BLE
packets exchanged between the device and the smartphone. We build multiple
datasets by varying the distance between the smartphone and the BLE device
for the normal scenario, and between the attacker and the smartphone for the
attack scenario. As depicted in Figure 3, at time t = 0, the first seen packets are
advertising messages. Then a connection is established between the smartphone
and the device at t = 2.792896 with packet number 200.

Fig. 3: BLE advertising and connection packets exchanged between the device
and the smartphone in a normal scenario with a distance of 1m between them.

We vary the distance between the devices in the set of values {30cm, 1m, 5m,
7.5m, 10m}. In total we obtain 10 datasets that we merge in a single dataset with
the distance value as a feature and each sample is labeled as attack or normal.
The obtained dataset has a size of 19MB and 77680 samples. We use 80% of this
dataset for the training phase of ML algorithms and 20% for testing.

4 Detection Approach

Our detection approach of the attack described in section 3 relies on two ma-
chine learning techniques: reconstruction and classification. This first technique

8 A. Lahmadi et al.

aims at building a baseline model of normal patterns by using a machine learn-
ing algorithm and then we measure deviations and errors from that model [6].
Reconstruction is applied on batches of data and when one of them has a signi-
ficative reconstruction error, it is considered as abnormal. The second technique
applies a classification method to classify packets marked with attack features.
The two techniques are applied jointly to detect respectively suspicious data and
identify attacks in these suspicious packets. Figure 4 depicts the processing steps
of our detection approach where reconstruction and classification techniques are
applied jointly.

Fig. 4: Our MitM attack detection approach by using jointly reconstruction and
classification techniques.

4.1 Features extraction and analysis

In this section, we describe our analysis of features extracted from BLE packets to
select among them the most important for the reconstruction and classification
techniques. We used the following 4 feature selection methods to identify an
optimal set of features:

– Variance: this method applies a variance threshold to remove all low-variance
features.

– Chi2: this method selects the features with the highest values of the chi-
squared test.

– Recursive Feature Elimination (RFE): this method selects the features by
recursively considering smaller and smaller sets of features while computing
their importance.

– Extra trees: this method applies ensemble learning technique using decision
tree provided with a random sample of k features and then select from them
the most important features by using the Gini index.

Let F = (f1, f2, ..., fn) the set of features extracted from a BLE packet, with
n = 250. Each method i provides a subset of features Fk,i composed of k features.

MitM Attack Detection in BLE Networks using ML 9

We apply then the intersection operator on the subsets Fk to obtain Ffinal with

Ffinal =
⋂4

i=1 Fk,i. We applied the 4 methods while computing the performance
of the machine learning algorithms until we obtain the optimal set of features.
Our analysis shows that the following 4 features in a BLE packets dataset are
the most important:

– Channel numbers: the channels used during the exchange of the BLE packets.
– Delta time: the difference of time between two successive packets.
– Received Signal Strength Indication (RSSI): the signal-to-noise ratio value

available in BLE packets.
– Distance: it denotes the distance between the mobile and the BLE device.

After selecting this set of optimal features, we analysed the stationarity and the
seasonality of datasets. The stationarity denotes that the statistical properties of
a feature are all constant over time. The seasonality denotes periodic patterns in
the datasets that should be eliminated prior to building reconstruction models.
To guarantee that our selected features represented as time series are stationary,
we applied the following tests: Augmented Dickey-Fuller test, and Kwiatkowsk-
Phillips-Schimdt-Shin test [4]. Our tests show that the 4 selected features are
stationary and we eliminated from them the seasonality patterns.

4.2 LSTM based model reconstruction

The reconstruction method consists in learning the normal behaviour of the
BLE packets exchange. In the training phase we are looking to minimise the
error between the learned data and the original dataset. In the testing phase,
if the data contains an abnormal behaviour, the reconstruction will decrease
which allows us to detect such behaviour in the observed packets. A technique
to realise a model construction is to rely on a neural network of type Long
Short-Term Memory (LSTM) [9]. In this way, we are able to approximate the
BLE applications behaviour while considering their temporal patterns. By using
this technique, we applied the following steps:

– Train the neural network on the dataset Xtrain;
– Evaluate the obtained model on the Xvalidation part while computing the

reconstruction error;
– Set a detection threshold to determine the presence of anomalies. We can

set, for instance, this threshold to 3 standard deviations of the mean value
of the error, which is an empirical choice and a widely used threshold value
for anomaly and outliers detection.

We realised this technique by using an LSTM auto-encoder which is a neural
network with an Encode-Decoder LSTM architecture [17]. The hyperparameters
of the used LSTM neural network are presented in Table 1. To set the detection
threshold, we compute the residual defined asR(X, X̂) = |X−X̂| with X̂ = f(X)
and f represents the transformation of our auto-encoder. At the end of the

10 A. Lahmadi et al.

Table 1: The hyperparameters of the LSTM neural network.

Hyperparameter Value

Optimizer Adam

Learning rate 0.001

Batch size 40

Epoch number 150

Loss function MSE

Validation metric Accuracy

Validation split 0.2

DL framework Tensorflow 1.13.1, Keras 2.2.4, Keras-tcn 2.6.7

training phase, we compute the mean and the standard-deviation of the residual

R(Xtrain, X̂train).

In the testing phase, we evaluate the residual R(Xtest, X̂test) to determine
for each data batch its anomaly score α defined as following:

α =

{
0 if |R(Xtest, X̂test)− µ(R(Xtrain, X̂train))| ≤ 3 ∗ σ(R(Xtrain, X̂train))

1 otherwise.

We used the score α to detect the presence of an anomaly in a data batch
if the residual is greater than 3 standard-deviations of the average. We obtain
thus Xtrain ∈ MT,F (R) which is the dataset of the nominal communication
patterns of BLE with T = 28918 the number of samples, and F = 4 the number
of features. We obtain in total: T ∗F = 115672 values. Then, as shown in Figure
5, we convert our training dataset to a tensor T s,t,F with s = 4819 the number
of samples, t = 6 the time-step (empirical choice) and F = 4 the number of
features. Indeed, we obtain in total s ∗ t ∗ F = T ∗ F .

In a first step, during the training phase we build a normal model of BLE
communications from a subset of the training dataset. If the model is close to
the normal behaviour of these communications, the reconstruction error should
be low. Figure 6a shows the details of this phase. We observe that the real values
fit well the predicted values with a very low reconstruction error (close to 0).

In a second step, we tested the reconstruction model obtained from Xtrain

on Xtest which contains the MitM attack packets. Figure 6b shows the details of
the reconstruction of the attack model. We clearly observe large reconstruction
errors and the testing data does not fit with the training model which indicates
the presence of anomalies.

To measure the reconstruction error between the normal and attack models,
we compared several error metrics which are BIAS (Bias of an estimator) , MSE
(Mean Squared Error), RMSE (Root Mean Squared Error) and MAE (Mean
Absolute Error) [3]. The construction errors using these metrics are shown in
Figure 7. We observe that the metric MSE measures with high precision the re-
construction error of the MitM attack traffic from the normal traffic. We observe

MitM Attack Detection in BLE Networks using ML 11

Fig. 5: Transformation of time series into training samples with a time-step = 3.

(a) Training of the normal model (b) Testing of the MitM attack model

Fig. 6: Training and testing of models reconstruction using LSTM.

also that all the metrics provide a low reconstruction error when predicting the
same normal traffic as input.

A major drawback when applying the LSTM based auto-encoder technique
in our case is the low value of the time-step, which is equal to 6 used for building
the input sequences. We have thus a low memory effect in the training neural
network. We can hardly increase this value, since our dataset is small and the
training phase will face the gradient vanishing or exploding problem where the
gradient becomes vanishingly small which prevents the neural network weights
from changing their values during the training phase with.

4.3 TCN based model reconstruction

Another technique for model reconstruction is using a Temporal Convolutional
Network (TCN) [10] instead of a LSTM based auto-encoder. A TCN is a class
of time-series model that employs a hierarchy of temporal convolutional with an
encoder-decoder architecture. It has the advantage of obtaining better results

12 A. Lahmadi et al.

Fig. 7: Reconstruction error between normal and attack patterns using LSTM.

with less samples which allows us to increase the time-step when building the
input sequences. The hyperparameter values of the TCN neural network are
similar to those used for the LSTM neural network, as presented in Table 1.

As input to the TCN, we used the Xtrain ∈MT,F (R) dataset which contains
normal communication patterns of BLE, with T = 28918 the number of temporal
samples and F = 4 the number of features. We convert these time series to a
tensor T s,t,F with s = 963 the number of samples, t = 30 the time-step and
F = 4 the number of features. Using this model the time-step is 5 times higher
than the LSTM based model. The prediction results of the normal behaviour of
BLE communications using TCN are depicted in Figure 8a. We mainly observe
that the predicted values fit well the real values and the reconstruction error is
close to 0.

(a) Training of the normal model (b) Testing of the MitM attack model

Fig. 8: Training and testing of models reconstruction using TCN.

The results of the testing phase by comparing the real and predicted values
are shown in Figure 8b. Similar to the LSTM based models, we observe that the
predicted values do not fit the real values and we obtain large reconstruction

MitM Attack Detection in BLE Networks using ML 13

errors. The reconstruction errors using different metrics when comparing nor-
mal and attack enabled BLE traffic are depicted in Figure 9. The TCN model
has more accurate and lower reconstruction error with high memory effect com-
pared to LSTM architecture (Figure 7) when predicting attack traffic behaviour
from normal traffic behaviour. Using the same anomaly score α, we are able to
discriminate data batches containing suspicious packets. However, both LSTM
and TCN models are only able to detect suspicious batches, without detecting
packets involved in the attack.

Fig. 9: Reconstruction error between normal and attack patterns using TCN.

4.4 Classification of BLE packets

After detecting suspicious batches of traffic with attack packets, the next step
of our detection process is to classify these packets according to their class:
”normal” or ”attack”. In our work, we applied the technique developed in [12]
by jointly using Text-Convolutional Neural Network (Text-CNN) for feature
extraction and a Random Forest algorithm for classification. In [12], the authors
show that combining Text-CNN for payload feature extraction and a Random
Forest algorithm for final packets classification outperforms a CNN model with
a softmax classifier. For BLE packets available in the dataset, we extract from
them their traffic statistics and we convert their payload into word embedding to
extract salient features with Text-CNN. The hyperparameters of the Text-CNN
neural network are presented in Table 2.

The statistical features that we extracted from the BLE traffic data are
presented in Table 3.

The payload based features are extracted by converting packet payload bytes
to low dimensional vectors using Word2Vec technique and then provide these
vectors as an input to a Text-CNN neural network. The extracted features are

14 A. Lahmadi et al.

Table 2: The hyperparameters of the Text-CNN neural network.

Hyperparameter Value

Optimizer Adam

Learning rate 0.0001

Batch size 50

Epoch number 50

Loss function binary cross-entropy

Validation metric Accuracy

Validation split 0.2

DL framework Tensorflow 1.13.1, Keras 2.2.4, Gensim (Word2Vec) 3.7.1

Table 3: Statistical features of BLE traffic data.

Features

Number of packets per second
Number of bytes per second
Max, min and average packets length
Max, min and average time interval between 2 packets
Number of packets for each BLE packets type (ADV, DATA, etc.)

then concatenated with the statistical features and provided as input to a Ran-
dom Forest algorithm using a number of estimators equal to 200 to classify the
packets. Our classification results are shown in the confusion matrix of Table 4.

Table 4: Confusion matrix of the classification of BLE packets.

Predicted labels
Normal Attack

Actual label
Normal 100% (9541/9543) 0% (2)
Attack 0.3% (12) 99.7% (4207/4219)

We observe that mostly all the packets are classified correctly with only 2 normal
packets misclassified as attack and 12 attack packets misclassified as normal.

The ROC curve of our classifier is depicted in Figure 10 with an Area Under
the Curve (AUC) close to 1 which confirms that our classification model has
a good measurement of separability between ”normal” and ”attack” packets.
However, we have to note that our obtained results with high classification per-
formance, are limited to the collected datasets within our experimental setup
environment, and it is still difficult to generalise the learned models on new
datasets with different settings.

MitM Attack Detection in BLE Networks using ML 15

Fig. 10: ROC curve of the BLE packets classifier.

5 Conclusion and future work

In this paper, we presented a study on the use of machine learning techniques
to detect MitM attack targeting BLE enabled IoT devices. This attack is trivial
to deploy and may be used easily by attackers to stole users private information
or alter control data exchanged between a companion mobile app and the de-
vice. We demonstrated the feasibility of the attack in a real-world deployment
while varying the distance between the BLE mobile and devices and collecting
datasets of exchanged BLE packets. We applied jointly reconstruction and clas-
sification models based on neural networks to detect suspicious network data
traffic batches and then identify from them attack packets. Our evaluation re-
sults show high detection accuracy (≈ 0.99) and low false positive rate (≈ 0.03).
In future work, we will extend the proposed method for detecting more classes of
BLE attacks including DoS and connection hijacking within various BLE envi-
ronments. We will also study efficient protection mechanisms for BLE networks.

References

1. Albahar, M., Haataja, K., Toivanen, P.: Bluetooth MITM Vulnerabilities: A Lit-
erature Review, Novel Attack Scenarios, Novel Countermeasures, and Lessons
Learned. International Journal on Information Technologies & Security, 8 (De-
cember 2016)

2. Antonakakis, M., et al.: Understanding the Mirai Botnet. In: 26th USENIX Secu-
rity Symposium (USENIX Security 17). pp. 1093–1110 (Aug 2017)

3. Botchkarev, A.: Performance Metrics (Error Measures) in Machine Learning Re-
gression, Forecasting and Prognostics: Properties and Typology (2018)

4. Box, G.E.P., Jenkins, G.M.: Time Series Analysis: Forecasting and Control. Pren-
tice Hall PTR, USA, 3rd edn. (1994)

16 A. Lahmadi et al.

5. Cayre, R., Roux, J., Alata, E., Nicomette, V., Auriol, G.: Mirage : un framework
offensif pour l’audit du Bluetooth Low Energy. In: Symposium sur la Sécurité des
Technologies de l’Information et des Communications (SSTIC 2019)

6. Friedman, E., Dunning, T.: Practical Machine Learning: A New Look at Anomaly
Detection (2014)

7. Goyal, R., Dragoni, N., Spognardi, A.: Mind the Tracker You Wear: A Security
Analysis of Wearable Health Trackers. In: Proceedings of the 31st Annual ACM
Symposium on Applied Computing. pp. 131–136. SAC ’16 (2016)

8. Hafeez, I., Antikainen, M., Ding, A.Y., Tarkoma, S.: IoT-KEEPER: Detecting Ma-
licious IoT Network Activity Using Online Traffic Analysis at the Edge. IEEE
Transactions on Network and Service Management 17(1), 45–59 (March 2020)

9. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Comput. 9(8),
1735–1780 (Nov 1997)

10. Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal Convolu-
tional Networks for Action Segmentation and Detection abs/1611.05267 (2016),
http://arxiv.org/abs/1611.05267

11. Matheus E. Garbelini, Sudipta Chattopadhyay, C.W.: SweynTooth: Unleashing
Mayhem over Bluetooth Low Energy. Tech. rep., Singapore University of Technol-
ogy and Design (2020)

12. Min, E., Long, J., Liu, Q., Cui, J., Chen, W.: TR-IDS: Anomaly-Based Intru-
sion Detection through Text-Convolutional Neural Network and Random Forest.
Security and Communication Networks 2018, 1–9 (Jul 2018)

13. Nguyen, T., Marchal, S., Miettinen, M., Fereidooni, H., Asokan, N., Sadeghi, A.:
DIoT: A Federated Self-learning Anomaly Detection System for IoT. In: 2019 IEEE
39th International Conference on Distributed Computing Systems (ICDCS)

14. Oliff, W., Filippoupolitis, A., Loukas, G.: Impact Evaluation and Detection of
Malicious Spoofing Attacks on BLE Based Occupancy Detection Systems. In: Pro-
ceedings of the 1st International Conference on Internet of Things and Machine
Learning. IML ’17, ACM (2017)

15. SIG, B.: Bluetooth Core Specification 4.0 (Dec 2010),
https://www.bluetooth.com/specifications/bluetooth-core-specification/

16. SIG, B.: Bluetooth Market Update 2019 (2019), https://www.bluetooth.com/wp-
content/uploads/2018/04/2019-Bluetooth-Market-Update.pdf

17. Srivastava, N., Mansimov, E., Salakhutdinov, R.: Unsupervised Learning of Video
Representations Using LSTMs. In: Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning - Volume 37. pp. 843–852.
ICML’15, JMLR.org (2015)

18. Vasilomanolakis, E., Daubert, J., Luthra, M., Gazis, V., Wiesmaier, A., Kikiras,
P.: On the Security and Privacy of Internet of Things Architectures and Systems.
In: 2015 International Workshop on Secure Internet of Things (SIoT)

19. Yaseen, M., Iqbal, W., Rashid, I., Abbas, H., Mohsin, M., Saleem, K., Bangash,
Y.A.: MARC: A novel framework for detecting MITM attacks in ehealthcare BLE
systems. J. Medical Systems 43(11), 324:1–324:18 (2019)

20. Zuo, C., Wen, H., Lin, Z., Zhang, Y.: Automatic Fingerprinting of Vulnerable
BLE IoT Devices with Static UUIDs from Mobile Apps. In: Proceedings of the
2019 ACM SIGSAC Conference on Computer and Communications Security

